Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Brownian dynamics study of the interaction between plastocyanin and cytochrome f.

Identifieur interne : 004958 ( Main/Exploration ); précédent : 004957; suivant : 004959

Brownian dynamics study of the interaction between plastocyanin and cytochrome f.

Auteurs : D C Pearson [États-Unis] ; E L Gross

Source :

RBID : pubmed:9826593

Descripteurs français

English descriptors

Abstract

The electrostatic interaction between plastocyanin (PC) and cytochrome f (cyt f), electron transfer partners in photosynthesis was studied using Brownian dynamics (BD) simulations. By using the software package MacroDox, which implements the BD algorithm of Northrup et al. (Northrup, S. H., J. O. Boles, and J. C. L. Reynolds. 1987. J. Phys. Chem. 91:5991-5998), we have modeled the interaction of the two proteins based on crystal structures of poplar PC and turnip cyt f at pH 7 and a variety of ionic strengths. We find that the electrostatic attraction between positively charged residues (K58, K65, K187, and R209, among others) on cyt f and negatively charged residues (E43, D44, E59, and E60, among others) on PC steers PC into a single dominant orientation with respect to cyt f, and furthermore, that the single dominant orientation that we observe is one that we had predicted in our previous work (Pearson, D. C., E. L. Gross, and E. S. David. 1996. Biophys. J. 71:64-76). This dominant orientation permits the formation of hydrophobic interactions, which are not implemented in the MacroDox algorithm. This proposed complex between PC and cyt f implicates H87, a copper ligand on PC, as the residue that accepts electrons from the heme on cyt f (and possibly through Y1 as we proposed previously). We argue for the existence of this single dominant complex on the basis of observations that the most favorable orientations of the interaction between PC and cyt f, as determined by grouping successful BD trajectories on the basis of closest contacts of charged residues, tend to overlap one another and have very close distances between the metal centers on the two proteins (copper on PC, iron on cyt f). We use this knowledge to develop a model for PC/cyt f interaction that places a reaction between the two proteins occurring when the copper-to-iron distance is between 16 and 17 A. This reaction distance gives a good estimate of the experimentally observed rate constant for PC-cyt f interaction. Analysis of BD results as a function of ionic strength predicts an interaction that happens less frequently and becomes less specific as ionic strength increases.

DOI: 10.1016/S0006-3495(98)77714-8
PubMed: 9826593
PubMed Central: PMC1299944


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Brownian dynamics study of the interaction between plastocyanin and cytochrome f.</title>
<author>
<name sortKey="Pearson, D C" sort="Pearson, D C" uniqKey="Pearson D" first="D C" last="Pearson">D C Pearson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Biophysics Program, The Ohio State University, Columbus, Ohio 43210 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Biophysics Program, The Ohio State University, Columbus</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gross, E L" sort="Gross, E L" uniqKey="Gross E" first="E L" last="Gross">E L Gross</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1998">1998</date>
<idno type="RBID">pubmed:9826593</idno>
<idno type="pmid">9826593</idno>
<idno type="pmc">PMC1299944</idno>
<idno type="doi">10.1016/S0006-3495(98)77714-8</idno>
<idno type="wicri:Area/Main/Corpus">004942</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004942</idno>
<idno type="wicri:Area/Main/Curation">004942</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004942</idno>
<idno type="wicri:Area/Main/Exploration">004942</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Brownian dynamics study of the interaction between plastocyanin and cytochrome f.</title>
<author>
<name sortKey="Pearson, D C" sort="Pearson, D C" uniqKey="Pearson D" first="D C" last="Pearson">D C Pearson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Biophysics Program, The Ohio State University, Columbus, Ohio 43210 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Biochemistry and Biophysics Program, The Ohio State University, Columbus</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gross, E L" sort="Gross, E L" uniqKey="Gross E" first="E L" last="Gross">E L Gross</name>
</author>
</analytic>
<series>
<title level="j">Biophysical journal</title>
<idno type="ISSN">0006-3495</idno>
<imprint>
<date when="1998" type="published">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Biophysical Phenomena (MeSH)</term>
<term>Biophysics (MeSH)</term>
<term>Cytochromes (chemistry)</term>
<term>Cytochromes f (MeSH)</term>
<term>Electron Transport (MeSH)</term>
<term>Macromolecular Substances (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Osmolar Concentration (MeSH)</term>
<term>Plastocyanin (chemistry)</term>
<term>Protein Conformation (MeSH)</term>
<term>Software (MeSH)</term>
<term>Static Electricity (MeSH)</term>
<term>Thermodynamics (MeSH)</term>
<term>Trees (MeSH)</term>
<term>Vegetables (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Arbres (MeSH)</term>
<term>Biophysique (MeSH)</term>
<term>Concentration osmolaire (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Cytochromes (composition chimique)</term>
<term>Cytochromes f (MeSH)</term>
<term>Logiciel (MeSH)</term>
<term>Légumes (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Phénomènes biophysiques (MeSH)</term>
<term>Plastocyanine (composition chimique)</term>
<term>Structures macromoléculaires (MeSH)</term>
<term>Thermodynamique (MeSH)</term>
<term>Transport d'électrons (MeSH)</term>
<term>Électricité statique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cytochromes</term>
<term>Plastocyanin</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cytochromes</term>
<term>Plastocyanine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Biophysical Phenomena</term>
<term>Biophysics</term>
<term>Cytochromes f</term>
<term>Electron Transport</term>
<term>Macromolecular Substances</term>
<term>Models, Molecular</term>
<term>Osmolar Concentration</term>
<term>Protein Conformation</term>
<term>Software</term>
<term>Static Electricity</term>
<term>Thermodynamics</term>
<term>Trees</term>
<term>Vegetables</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Arbres</term>
<term>Biophysique</term>
<term>Concentration osmolaire</term>
<term>Conformation des protéines</term>
<term>Cytochromes f</term>
<term>Logiciel</term>
<term>Légumes</term>
<term>Modèles moléculaires</term>
<term>Phénomènes biophysiques</term>
<term>Structures macromoléculaires</term>
<term>Thermodynamique</term>
<term>Transport d'électrons</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The electrostatic interaction between plastocyanin (PC) and cytochrome f (cyt f), electron transfer partners in photosynthesis was studied using Brownian dynamics (BD) simulations. By using the software package MacroDox, which implements the BD algorithm of Northrup et al. (Northrup, S. H., J. O. Boles, and J. C. L. Reynolds. 1987. J. Phys. Chem. 91:5991-5998), we have modeled the interaction of the two proteins based on crystal structures of poplar PC and turnip cyt f at pH 7 and a variety of ionic strengths. We find that the electrostatic attraction between positively charged residues (K58, K65, K187, and R209, among others) on cyt f and negatively charged residues (E43, D44, E59, and E60, among others) on PC steers PC into a single dominant orientation with respect to cyt f, and furthermore, that the single dominant orientation that we observe is one that we had predicted in our previous work (Pearson, D. C., E. L. Gross, and E. S. David. 1996. Biophys. J. 71:64-76). This dominant orientation permits the formation of hydrophobic interactions, which are not implemented in the MacroDox algorithm. This proposed complex between PC and cyt f implicates H87, a copper ligand on PC, as the residue that accepts electrons from the heme on cyt f (and possibly through Y1 as we proposed previously). We argue for the existence of this single dominant complex on the basis of observations that the most favorable orientations of the interaction between PC and cyt f, as determined by grouping successful BD trajectories on the basis of closest contacts of charged residues, tend to overlap one another and have very close distances between the metal centers on the two proteins (copper on PC, iron on cyt f). We use this knowledge to develop a model for PC/cyt f interaction that places a reaction between the two proteins occurring when the copper-to-iron distance is between 16 and 17 A. This reaction distance gives a good estimate of the experimentally observed rate constant for PC-cyt f interaction. Analysis of BD results as a function of ionic strength predicts an interaction that happens less frequently and becomes less specific as ionic strength increases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9826593</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>01</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-3495</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>75</Volume>
<Issue>6</Issue>
<PubDate>
<Year>1998</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Biophysical journal</Title>
<ISOAbbreviation>Biophys J</ISOAbbreviation>
</Journal>
<ArticleTitle>Brownian dynamics study of the interaction between plastocyanin and cytochrome f.</ArticleTitle>
<Pagination>
<MedlinePgn>2698-711</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The electrostatic interaction between plastocyanin (PC) and cytochrome f (cyt f), electron transfer partners in photosynthesis was studied using Brownian dynamics (BD) simulations. By using the software package MacroDox, which implements the BD algorithm of Northrup et al. (Northrup, S. H., J. O. Boles, and J. C. L. Reynolds. 1987. J. Phys. Chem. 91:5991-5998), we have modeled the interaction of the two proteins based on crystal structures of poplar PC and turnip cyt f at pH 7 and a variety of ionic strengths. We find that the electrostatic attraction between positively charged residues (K58, K65, K187, and R209, among others) on cyt f and negatively charged residues (E43, D44, E59, and E60, among others) on PC steers PC into a single dominant orientation with respect to cyt f, and furthermore, that the single dominant orientation that we observe is one that we had predicted in our previous work (Pearson, D. C., E. L. Gross, and E. S. David. 1996. Biophys. J. 71:64-76). This dominant orientation permits the formation of hydrophobic interactions, which are not implemented in the MacroDox algorithm. This proposed complex between PC and cyt f implicates H87, a copper ligand on PC, as the residue that accepts electrons from the heme on cyt f (and possibly through Y1 as we proposed previously). We argue for the existence of this single dominant complex on the basis of observations that the most favorable orientations of the interaction between PC and cyt f, as determined by grouping successful BD trajectories on the basis of closest contacts of charged residues, tend to overlap one another and have very close distances between the metal centers on the two proteins (copper on PC, iron on cyt f). We use this knowledge to develop a model for PC/cyt f interaction that places a reaction between the two proteins occurring when the copper-to-iron distance is between 16 and 17 A. This reaction distance gives a good estimate of the experimentally observed rate constant for PC-cyt f interaction. Analysis of BD results as a function of ionic strength predicts an interaction that happens less frequently and becomes less specific as ionic strength increases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pearson</LastName>
<ForeName>D C</ForeName>
<Initials>DC</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Biophysics Program, The Ohio State University, Columbus, Ohio 43210 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gross</LastName>
<ForeName>E L</ForeName>
<Initials>EL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biophys J</MedlineTA>
<NlmUniqueID>0370626</NlmUniqueID>
<ISSNLinking>0006-3495</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003580">Cytochromes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046911">Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-09-9</RegistryNumber>
<NameOfSubstance UI="D010970">Plastocyanin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-46-5</RegistryNumber>
<NameOfSubstance UI="D045348">Cytochromes f</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055592" MajorTopicYN="N">Biophysical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001703" MajorTopicYN="N">Biophysics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003580" MajorTopicYN="N">Cytochromes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045348" MajorTopicYN="N">Cytochromes f</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046911" MajorTopicYN="N">Macromolecular Substances</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009994" MajorTopicYN="N">Osmolar Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010970" MajorTopicYN="N">Plastocyanin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014675" MajorTopicYN="N">Vegetables</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1998</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>3</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1998</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>3</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9826593</ArticleId>
<ArticleId IdType="pmc">PMC1299944</ArticleId>
<ArticleId IdType="pii">S0006-3495(98)77714-8</ArticleId>
<ArticleId IdType="doi">10.1016/S0006-3495(98)77714-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1977 May 25;112(3):535-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">875032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1998 Mar 15;6(3):323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9551554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1982 Jun 5;157(4):671-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6288964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1983 Sep 15;169(2):521-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6620385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biophys Chem. 1985;14:387-417</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3890885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1986 Mar;99(3):833-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3711045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1986 Nov 4;853(1):29-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3533150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 1986 Oct;18(5):419-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3533910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1986;130:413-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3773742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 Nov 20;192(2):361-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3560221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1987 Dec 17;894(3):386-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3689779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Jul 1;241(4861):67-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2838904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biophys Chem. 1988;17:451-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3293595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1988 Oct 20;203(4):1071-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3210236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1989 Apr;108(4):1397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2647767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1989 Jan;105(1):98-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2738049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Oct 3;28(20):8039-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2605172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1990 Mar;277(2):241-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2310192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1990 Mar 15;1016(1):107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2155655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Dec;10(13):4011-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1756713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1991;11(4):281-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1758883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Feb 27;355(6363):796-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1311417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Jun 9;31(22):5145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1606137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1992 Aug 28;1102(1):85-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1324731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr B. 1992 Dec 1;48 ( Pt 6):790-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1492962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 May 4;32(17):4552-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Jun 15;32(23):6073-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8507642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 1994 Feb;26(1):49-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8027022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1994 May;3(5):717-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8061602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1994 Feb 15;2(2):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8081747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1994 Dec;20(4):320-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7731951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1995 Jun;20(6):217-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7631417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1995 Jun;117(6):1209-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7490262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 1995 Jun;27(3):263-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8847340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8552582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Nov 15;3(11):1159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8591027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 15;271(11):6225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8626414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jun 4;35(22):7021-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8679527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1996 Jun;5(6):1081-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8762139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1996 Jul;71(1):64-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8804589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Nov 19;35(46):14590-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8931557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1997 Jan;6(1):53-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9007976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1980 Jun 10;591(1):162-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7388013</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Gross, E L" sort="Gross, E L" uniqKey="Gross E" first="E L" last="Gross">E L Gross</name>
</noCountry>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Pearson, D C" sort="Pearson, D C" uniqKey="Pearson D" first="D C" last="Pearson">D C Pearson</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004958 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004958 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9826593
   |texte=   Brownian dynamics study of the interaction between plastocyanin and cytochrome f.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9826593" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020